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1. Introduction

The renormalization of noncommutative quantum field theories has undergone enormous

progress during the last few years (see e.g. [34, 35] for an overview). The mixing of ultravio-

let and infrared scales prohibits the successful application of conventional renormalization

schemes, such as the Wilsonian approach [32]. Grosse and Wulkenhaar understood the

appearance of UV/IR mixing in scalar φ⋆4
2d theory as an anomaly due to a missing marginal

term in the Lagrangian [22, 23]. A certain UV/IR duality symmetry of the theory under

symplectic Fourier transformation of the fields [26] eliminates UV/IR mixing. In order

to make their propagator covariant under this duality, they added a harmonic oscillator

potential to the free Lagrangian. The analysis of Grosse and Wulkenhaar has been success-

fully extended to a variety of other models [14, 43, 29, 30, 19, 18, 44, 15], and it is believed

that a constructive definition of these quantum field theories may be possible due to the

absence of renormalons [10, 31, 13]. The UV/IR duality has been recently interpreted in
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terms of metaplectic representations of the Heisenberg group in [3], where the analog of

the Grosse-Wulkenhaar model has also been defined on solvable symmetric spaces.

The duality covariant propagators in the original field theories studied in [26] govern the

propagation of charged scalar particles in a constant magnetic background. Heuristically,

the duality exchanges infrared and ultraviolet divergences, such that both divergences can

be cut off simultaneously. This enables the standard Wilsonian renormalization procedure

to be properly applied. However, thus far all models considered have been formulated in

Euclidean space. In this paper we will investigate how the duality covariant scalar quantum

field theories are modified in Minkowski space with maximal rank noncommutativity.

In contrast to the commutative case, the perturbative dynamics of noncommutative

field theories in Minkowski signature cannot be simply obtained via a Wick rotation of

their Euclidean counterparts [2, 1, 36, 27]. In non-planar graphs, the Heaviside function

implementing time-ordering and the two-point function cannot be combined to yield twisted

convolution products of Feynman propagators. A careful analysis treating both functions

on a different footing reveals that the renormalization properties in Minkowski signature

are very different than on Euclidean space [1], and it has been suggested that the UV/IR

mixing problem may be far less severe or even absent in this case.

In order to analyse the UV/IR duality in Minkowski signature, we will continue the

models investigated in [26, 29, 30] to Minkowski space. Thus we will consider a complex

scalar field in a background electric field. We will establish the duality covariance of the

interacting noncommutative quantum field theory. In doing so we will introduce a matrix

basis for the expansion of fields, which can be considered as the Minkowskian analog of

the expansion in Landau wavefunctions on noncommutative Euclidean space. The matrix

basis is the key setting for application of the Wilson-Polchinski renormalization group

equation in the Grosse-Wulkenhaar model. In contrast to the Euclidean case, however,

the Lorentzian duality covariant field theory requires two coupled complex matrices in its

representation as a matrix model, a necessary unitary and causal property which does not

follow by a simple Wick rotation. The two-matrix model naturally ensures the stability

and C T -invariance of the field theory. This model can thus be regarded as an analytical

continuation of the Grosse-Wulkenhaar models to noncommutative Minkowski space, and

is the starting point for the renormalization of noncommutative quantum field theory in

Lorentzian signature.

The 1+1-dimensional Klein-Gordon operator appearing in the free part of the duality

covariant action is a special representation of the quantum inverted harmonic oscillator

defined by the Hamiltonian

Ĥ =
1

2

(

P̂ 2 − ω2 Q̂2
)

(1.1)

with ω ∈ R, where the position and momentum operators Q̂ and P̂ obey the canonical

commutation relation [Q̂, P̂ ] = i . The inverted harmonic oscillator emerges if one inserts

an imaginary frequency ± iω into the usual quantum harmonic oscillator. As we will see

below, we can also obtain one system from the other by a complex scaling. However,

the spectral properties of these two systems are completely different. Unlike the quantum
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harmonic oscillator, which has a discrete spectrum bounded from below, the inverted oscil-

lator exhibits a continuous spectrum which is not bounded from below. Intriguingly, even

though the operator Ĥ is selfadjoint, it possesses a second set of generalized eigenfunctions

corresponding to imaginary eigenvalues. These functions occur as residues of the original

eigenfunctions analytically continued to the complex energy plane. Such functions are well

known in the literature and are used to describe resonant states, often called Gamow states

(see e.g. [5] for a review). To uncover these states we have to close the contour of integra-

tion over the eigenfunction expansion in the upper or lower complex half-plane, and the

resulting discrete expansion is analogous to the expansion in Landau wavefunctions.

From a technical standpoint, the matrix basis is derived from an application of the

Gel’fand-Maurin spectral theorem and an appropriate resonance expansion of fields. This

expansion requires truncation of the configuration space of the field theory to a dense sub-

space, which we describe in detail. Thus the integration domain for the functional integral

must be truncated, which may be thought of as an ingredient of the duality covariant

regularization of the quantum field theory. We work in the framework of generalized func-

tions and Gel’fand-Shilov spaces [21], which are subalgebras of Schwartz space closed under

Fourier transformation and allow for the appropriate expansions in terms of harmonic os-

cillator wavefunctions [25]. The Gel’fand-Shilov spaces are also closed under multiplication

with the noncommutative star product [38, 9, 37], and are thus natural candidates for the

configuration spaces of duality covariant noncommutative field theories. These functional

analytic techniques should all prove useful for further development of the renormalization

programme on noncommutative Minkowski space.

The outline of the remainder of this paper is as follows. In section 2 we give a precise

formulation of the noncommutative quantum field theory in 1 + 1-dimensions and state

its duality symmetries. In section 3 we develop in detail the resonance expansion of our

noncommutative fields and use it to prove the duality covariance of the Lorentzian quantum

field theory. In section 4 we describe both physical and analytic properties of the subspace

of Schwartz space on which our resonance expansions are valid. In section 5 we describe the

equivalent two-matrix model which governs the dynamics of the duality covariant quantum

field theory. In section 6 we describe the generalization of our results to higher-dimensional

noncommutative Minkowski space. In section 7 we summarize our findings and discuss the

prospects of using our analysis in further directions. Finally, two appendices at the end of

the paper contain some of the more technical aspects of our development. In appendix A we

describe properties and the explicit analytic forms of the generalized eigenfunctions which

are used to derive the resonance expansions. In appendix B we derive the explicit expression

for the free two-point Green’s function in the duality covariant quantum field theory.

2. Formulation of the duality covariant field theory

In this section we will describe the scalar field theory we shall work with and its duality

symmetries. Let us begin by giving a heuristic motivation behind the duality. Consider the

noncommutative field theory of a complex scalar field φ(x) in D-dimensional spacetime.

The noncommutativity parameters are specified by a real constant D ×D antisymmetric
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matrix θ. The infrared dynamics of the quantum field theory are mediated through the

interactions of noncommutative “dipoles” [33], which are extended degrees of freedom

(rigid “rods”) whose lengths are proportional to their transverse momentum. For a dipole

of momentum k, its dipole moment is θ ·k and the position coordinate x of the scalar field

is Bopp shifted to the commutative variable

r = x + θ · k . (2.1)

The dipole degrees of freedom are created by the operators [33, 42]

Wk[φ] = Tr exp
(

i |k|φ(x)
)

= Tr exp
(

i |k|φ(r − iθ · ∇r)
)

. (2.2)

In the case of noncommutative gauge theory, an alternative interpretation of the infrared

dynamics as a non-renormalizable gravitational sector has been given recently in [39, 20].

On the other hand, the ultraviolet dynamics are governed by the elementary quantum

fields φ, which create pointlike quanta of momenta k. The ultraviolet and infrared degrees

of freedom are “dual” to one another [33]. The UV/IR mixing problem can in this way

be understood as a mismatch between the dressed coordinates (2.1) and the elementary

momenta k. We will cure this problem by making the UV/IR “duality” symmetric via

substitution of the generalized momenta

k 7−→ k + E · x , (2.3)

where the real constant D×D antisymmetric matrix E can be interpreted as an “electro-

magnetic” background.

For this, consider the quantum field theory of a massive, complex scalar field φ(x)

minimally coupled to a constant electromagnetic field in flat Minkowski spacetime, and in

the background of an inverted harmonic oscillator potential. To simplify the presentation

we will focus mainly on the case ofD = 1+1 dimensions, commenting later on the extension

to generic spacetime dimension (see section 6). The spacetime coordinates are denoted by

x = (t, x) = (xµ). We will denote by (Gµν) = diag(1, 1) the flat Euclidean metric and with

(ηµν) = diag(1,−1) the flat Minkowski metric. The electric field strength tensor is denoted

E = (Eµν) and

F [φ](k) =
1

2π

∫

R2

dx e− ik·x φ(x) with k · x = kµ x
µ := ηµν k

µ xν (2.4)

is the usual Fourier transformation of the field φ(x).

The field theory is defined by the action S = S0 + g2 Sint with the free part given by

S0 =

∫

R2

dx φ∗(x)
(

σD
2 + (1 − σ) D̃

2 + µ2
)

φ(x) , (2.5)

where the parameter σ ∈ [0, 1], µ2 > 0 is the mass parameter, and D
2 = ηµν

Dµ Dν with

Dµ the generalized momentum operators defined as

Dµ =
1√
2

(− i ∂µ + Eµν x
ν) , (2.6)
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and (∂µ) = (∂/∂xµ) = (∂t, ∂x). The generalized momenta obey the commutation relations

[Dµ,Dν ] = iEµν , (2.7)

which allows us to interpret the constant electric field strength Eµν = E ǫµν as a parameter

which produces noncommuting momentum space coordinates. The other kinetic operator

D̃
2 = ηµν

D̃µ D̃ν is specified in terms of the “dual” momenta

D̃µ =
1√
2

(− i ∂µ − Eµν x
ν) (2.8)

which commute with the operators Dµ and are obtained from (2.6) by the charge conjuga-

tion transformation C : Eµν 7→ −Eµν .

The interaction part consists of the two inequivalent, noncommutative quartic inter-

actions

Sint =

∫

R2

dx
[

α (φ∗ ⋆ φ ⋆ φ∗ ⋆ φ)(x) + β (φ∗ ⋆ φ∗ ⋆ φ ⋆ φ)(x)
]

(2.9)

weighted by the real parameters α and β. We will use the usual Grönewold-Moyal star-

product which may be defined by the twisted convolution product

f(x) ⋆ g(x) =
1

(2π)2

∫

R2

dk

∫

R2

dp F [f ](k)F [g](p) e
i

2
θ ǫµν kµ pν

e i (k+p)·x

=
1

(2π θ)2

∫

R2

dx1

∫

R2

dx2 f(x1) g(x2) e− 2 i

θ
ǫµν (x1−x)µ (x2−x)ν

. (2.10)

We assume here that φ ∈ S(R2) is a Schwartz test function on R
2 for simplicity. The Fourier

transformation (2.4) is a topological automorphism of Schwartz space, and the twist factor

exp( i
2 θ ǫµν k

µ pν) is a multiplier for this space. Later on we will further restrict this space

to an appropriate subspace.

We are now ready to give a precise formulation of the duality in the classical field theory.

Theorem 1. The action

S = S0 + g2 Sint =: S[φ;E, g,θ] (2.11)

defined above obeys

S[φ;E, g,θ] = S
[

φ̃ ; E , g̃ , θ̃
]

, (2.12)

where

φ̃(x) =
√

∣

∣det(E)
∣

∣ F [φ](E · x) (2.13)

and F [φ](k) is the Fourier transform of φ(x). The transformed coupling parameters are

θ̃ = −4E−1 θ−1 E−1 and g̃ = 2
∣

∣ det(E · θ)
∣

∣

−1/2
g . (2.14)

Moreover, the transformation (φ;E, g,θ) 7→ (φ̃;E, g̃, θ̃ ) is a duality of the field theory, i.e.

it generates a cyclic group of order two.
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At the special points θ = ± 2/E the field theory is completely invariant under Fourier

transformation (up to the sign of θ), and it is said to be self-dual. The proof of Theorem 1

is identical to that of [26, Prop. 1], which holds irrespectively of the signature of the space-

time metric. As in [26], each of the differential operators D
2 and D̃

2 is invariant under

Fourier transformation up to a rescaling. The duality covers both cases σ = 0 and σ = 1

representing charged scalar fields in a background electric field alone, analogously to the

Euclidean models of [26]. Since

D
2 + D̃

2 = −∂µ ∂µ − E2 xµ xµ , (2.15)

the choice σ = 1
2 corresponds to scalar fields in an inverted harmonic oscillator potential

alone and is closest to the conventional field theories on noncommutative Minkowski space

with no background electric field. In the Euclidean setting it is this choice which renders

the standard noncommutative φ4-theory renormalizable to all orders of perturbation theory

by giving the free propagator the necessary decay behaviour for a multiscale slicing [22],

achieved by discretization of the spectrum of the free Hamiltonian via the effective infrared

regularization provided by the confining harmonic oscillator potential.

Let us now turn to the duality at the full quantum level in Minkowski spacetime. For-

mally, the quantum field theory defined by the classical action above is duality invariant

even for Minkowski metric. It is defined by the usual perturbative, formal functional inte-

gral

Z[J ] =

∫

Dφ Dφ∗ exp
(

iS[φ;E, g,θ] + i 〈φ, J〉 + i 〈J, φ〉
)

(2.16)

where 〈f, g〉 :=
∫

R2 dx f∗(x) g(x), with independent external sources J(x) and J∗(x). The

generating functional of all connected Green’s functions is given by

G[J ] = − log
Z[J ]

Z[0]
=: G[J ;E, g,θ] . (2.17)

As in [26], due to the duality covariance of the classical action S, the invariance of

the functional integration measure under the transformation φ 7→ φ̃, and the fact that

〈φ, J〉 = 〈φ̃, J̃ 〉, we formally obtain the identity

G[J ;E, g,θ] = G
[

J̃ ; E , g , θ̃
]

. (2.18)

However, a proper treatment requires a specification of ultraviolet and infrared regulariza-

tions. As we will show in the next section, there exists a duality invariant regularization

which cures all possible divergences of the quantum field theory. Assuming this is properly

done we then see that the regularized quantum field theory is duality invariant.

We summarize this result as follows.

Theorem 2. There exists a regularization which is invariant under the duality transforma-

tion given in Theorem 1. Moreover, with this regularization and for Minkowski spacetime

metric, all Feynman amplitudes of the quantum field theory are convergent. The corre-

sponding regularized generating functional GΛ of all connected Green’s functions, where Λ

– 6 –
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is a cut-off parameter defined by the regularization, is therefore well-defined. It possesses

the duality symmetry

GΛ[J ;E, g,θ] = GΛ

[

J̃ ; E , g̃ , θ̃
]

(2.19)

where J̃(x) =
√

|det(E)| F [J ](E · x) and F [J ] is the Fourier transform of J .

The key ingredient for the quantum duality is the existence of a regularization of the

quantum field theory which respects the duality. In [26] it was shown that in Euclidean

space there exists a natural regularization for the theory. Rather than expanding the

fields in plane waves, it is more natural to expand them in eigenfunctions of the Landau

Hamiltonian D
2
E := Gµν

Dµ Dν where Gµν is the Euclidean metric, which diagonalizes the

free part of the action. Since the Landau wavefunctions are not eigenfunctions of the

operator D
2 = ηµν

Dµ Dν , the proof given in [26] does not directly apply in Minkowski

spacetime. In the next section we will develop an analogous expansion for Minkowski

signature, which will allow us to prove the theorem in a similar manner. The technical

details are rather intricate in this case, and we will uncover some surprising differences

from the Euclidean case.

In what follows it will be useful to employ the Weyl-Wigner correspondence of noncom-

mutative field theory [40]. It will play a central role in our analysis of both the free action

where no noncommutativity shows up and in our analysis of the noncommutative interac-

tions. In the former case it will allow us to switch easily between different representations of

our Klein-Gordon operator D
2, while on the other hand we can utilize some nice properties

of this mapping to give explicit expressions for the generalized eigenfunctions of D
2 in our

original representation and thus prove the duality covariance of the model. In the latter

case we can use the same property to map our quantum field theory onto a matrix model.

The Weyl-Wigner correspondence provides a one-to-one correspondence between the

algebra of fields on R
2 and a ring of operators with (suitably normalized) trace Tr , con-

structed through replacing the local coordinates xµ of R
2 by Hermitean operators x̂µ

obeying the Heisenberg commutation relations

[

x̂µ , x̂ν
]

= i θµν . (2.20)

Given a Schwartz function f(x), we introduce its Weyl symbol

Ŵ[f ] =
1

2π

∫

R2

dk F [f ](k) exp
(

i kµ x̂µ
)

, (2.21)

which is a compact operator. The transformation f(x) 7→ Ŵ[f ] is invertible with inverse

given by [40]

f(x) =
1

2π

∫

R2

dk e− ik·x Tr
(

Ŵ[f ] exp( i kµ x̂µ)
)

=: W[Ŵ [f ]](x) , (2.22)

which is often called the Wigner distribution function of the operator Ŵ [f ]. One has [40]

Ŵ[f ] Ŵ[g] = Ŵ [f ⋆ g] and W[f̂ ] ⋆W[ĝ] = W[f̂ ĝ] (2.23)

– 7 –
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for arbitrary Schwartz functions f(x), g(x) and compact operators f̂ , ĝ, while

∫

R2

dx f(x) = Tr
(

Ŵ[f ]
)

and Tr
(

f̂
)

=

∫

R2

dx W[f̂ ](x) . (2.24)

3. Quantum duality on noncommutative Minkowski space

In order to prove Theorem 2 for Minkowski spacetime, we will show how to expand the

boson fields in a discrete set of generalized eigenfunctions of the operator D
2. One of the

most important facts needed for the proof in the Euclidean case is that the operator D
2
E

has a discrete spectrum. By expanding the fields in this discrete basis of eigenfunctions,

the field theory can be mapped onto a matrix model and regularized by cutting off the

sums appearing in the Feynman amplitudes at some finite matrix rank N . The Minkowski

case is much more subtle, since the spectrum of the operator D
2 is the whole real line

R. Nevertheless, we will show that there exists an appropriate space of fields in which a

discrete expansion is possible. This will enable us to apply the arguments given in the

Euclidean case. In the following we will extend and generalize some results of [6] which

were obtained in a different context than ours.

3.1 Mapping onto the inverted harmonic oscillator

To analyse the duality invariance of our model it is necessary to fix the self-dual point

θµν = θ ǫµν with θ = 2/E. (When we study the interacting field theory later on, we will

assume that θ and E are independent parameters.)

Lemma 1. There exists a classical Hamiltonian H(x) = 1
2

(

x2 − t2
)

such that the actions

of D
2 and D̃

2 on any function f(x) is proportional to the star product of H with that

function as

D
2f(x) = E2H(x) ⋆ f(x) and D̃

2f(x) = E2 f(x) ⋆ H(x) . (3.1)

Proof. The first equality follows from an elementary calculation

1

2

(

x2 − t2
)

⋆ f(x) =
1

2

[

x2 − t2 − 2 i (θ/2) (x ∂t + t ∂x) − (θ/2)2 (∂2
t − ∂2

x)
]

f(x) (3.2)

=
1

2E2

(

−∂µ ∂µ − 2 iE ǫµν x
ν ∂µ − E2 xµ xµ

)

f(x) =
1

E2
D

2f(x) ,

where in the second line we have set θ = 2/E. An analogous calculation establishes the

second equality in (3.1).

Instead of the operators D
2 and D̃

2, we may thus work with the classical Hamiltonian

H(x), or even better with its Weyl symbol Ŵ [H] =: Ĥ . This operator is given by

Ĥ =
1

2

(

Ŵ[x]2 − Ŵ[t]2
)

=
1

2

(

p̂2 − q̂2
)

, (3.3)

– 8 –
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where the operators p̂ := Ŵ[x] and q̂ := Ŵ [t] obey the commutation relation

[

q̂ , p̂
]

= Ŵ[t ⋆ x− x ⋆ t] = i θ = 2 i /E . (3.4)

The operator Ĥ is known as the inverted harmonic oscillator Hamiltonian. Its spectral

properties are reviewed below.

3.2 Rigged Hilbert space and resonance expansion

Resonance states were first introduced to describe decay phenomena in nuclei. They cor-

respond to complex energy eigenvalues of a Hamiltonian. The mathematical object in

which to embed such states is a rigged Hilbert space. The extension of the usual Hilbert

space to a rigged Hilbert space is also necessary to deal with continuous spectra of selfad-

joint operators. The spectral theorem for Hilbert spaces, which is only valid for operators

with discrete spectra, can be extended to these operators by the Gel’fand-Maurin theorem

(also known as the nuclear spectral theorem). See e.g. [12] and references therein for an

introduction to rigged Hilbert spaces in quantum mechanics.

A rigged Hilbert space is roughly speaking a triplet of spaces

Φ ⊂ H ⊂ Φ′ , (3.5)

where Φ is a dense, topological vector subspace of an infinite-dimensional Hilbert space

H and Φ′ is its topological dual, i.e. the space of continuous linear functionals on Φ. The

action of a functional F ∈ Φ′ on a vector φ ∈ Φ will be denoted 〈φ|F 〉 ∈ C. It is the

extension of the inner product on H to Φ × Φ′. If Â is a selfadjoint operator on H, then

a complex number λ ∈ C is called a generalized eigenvalue of Â if there is a nonzero

functional Fλ ∈ Φ′, called a generalized eigenvector, such that for any φ ∈ Φ one has

〈φ|ÂFλ〉 := 〈Âφ|Fλ〉 = λ 〈φ|Fλ〉 . (3.6)

In this way the operator Â can be extended to the dual space Φ′, and it is possible to make

sense of complex eigenvalues of selfadjoint operators.

By the Gel’fand-Maurin theorem, for every selfadjoint operator Â there exists a mea-

sure dµ on the spectrum Σ(Â) ⊂ R, which for an absolutely continuous spectrum can be

chosen to be Lebesgue measure, such that for almost every λ ∈ Σ(Â) we can find a nonzero

functional |Fλ〉 ∈ Φ′ with

Â|Fλ〉 = λ |Fλ〉 . (3.7)

These generalized eigenvectors cover the spectrum and form a complete set, and thus for

an arbitrary vector |φ〉 ∈ Φ provide the decomposition

|φ〉 =
∑

λn∈Σp(Â)

〈Fλn
|φ〉 |Fλn

〉 +

∫

Σc(Â)
dλ 〈Fλ|φ〉 |Fλ〉 (3.8)

– 9 –



J
H
E
P
0
2
(
2
0
0
9
)
0
3
1

where Σp(Â) and Σc(Â), with Σ(Â) = Σp(Â) ∪ Σc(Â), are respectively the point and

continuous spectrum of Â. On the domain Φ, the Gel’fand-Maurin theorem allows the

spectral representation for Â given by

Â
∣

∣

Φ
=

∑

λn∈Σp(Â)

λn |Fλn
〉〈Fλn

| +
∫

Σc(Â)
dλ λ |Fλ〉〈Fλ| . (3.9)

We will now investigate the spectral structure and the rigged Hilbert space of the inverted

harmonic oscillator Hamiltonian Ĥ . The spectral properties of Ĥ were analysed in [7, 8].

Our first goal is to find the eigenfunctions of Ĥ and determine the rigged Hilbert

space in which an eigenvector expansion is possible. The spectrum of Ĥ is R and the

rigged Hilbert space is given by

S(R) ⊂ L2(R) ⊂ S ′(R) , (3.10)

where S(R) is the Schwartz space and S ′(R) is the dual space of tempered distributions. We

will then show that there exists a set of generalized eigenfunctions corresponding to imagi-

nary eigenvalues. Since these eigenvalues do not belong to the spectrum, we cannot simply

apply the Gel’fand-Maurin theorem to achieve a discrete expansion on the rigged Hilbert

space (3.10). Nevertheless, it is the expansion in these eigenfunctions we are interested in.

We will show that they arise as residues of the original eigenfunctions corresponding to the

continuous eigenvalues. Through a further restriction of the domain of the Hamiltonian

Ĥ , we can apply the residue theorem to reduce the continuous eigenvector expansion to a

discrete one.

Lemma 2. The operator Ĥ is selfadoint on L2(R) with spectrum Σ(Ĥ) = R.

The proof of Lemma 2 can be found in [7]. As mentioned above, since we are dealing

with a continuous spectrum we cannot expect the eigenfunctions to live in L2(R). We will

now choose a special representation to see what the eigenfunctions of Ĥ look like. In order

to work in a similar convention to [8], we multiply Ĥ by E′ 2 := (E/2)2. Denoting by |q〉
the eigenbasis of q̂ with eigenvalue q ∈ R, we get the eigenvalue equation

1

2

(

− ∂2
q − E′ 2 q2

)

χE
±(q) = E χE

±(q) . (3.11)

Since the differential operator in this equation is parity invariant, each eigenvalue E is two-

fold degenerate as indicated through the additional index ± carried by the eigenfunctions.

Substituting z =
√

2 iE′ q the eigenvalue equation can be rearranged to the form

(

∂2
z + ν +

1

2
− z2

4

)

χE
±(z) = 0 , (3.12)

where

ν = − i
E
E′ −

1

2
. (3.13)
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The differential equation (3.12) is solved by the parabolic cylinder functions Dν(z)

which are defined by

Dν(z) =
1

Γ(−ν) e− 1

4
z2

∫ ∞

0
dt e−z t e− 1

2
t2 t−ν−1 . (3.14)

In particular, every solution is a linear combination of the functions Dν(z), Dν(−z),
D−ν−1( i z) and D−ν−1(− i z). Only two of them are linearly independent. As claimed

above, the spectrum is the entire real line and is thus not bounded from below. This

property is exactly what we need to construct our discrete expansion.

For our purposes we will need two different sets of normalized eigenfunctions χE
± and ηE±,

both corresponding to the eigenvalue E . They are related to each other by ηE±(q) = χE
±(q)∗,

and are given explicitly by [8]

χE
±(q) =

C√
2π E′ i

ν
2
+ 1

4 Γ(ν + 1)D−ν−1

(

∓
√
−2 iE′ q

)

,

ηE±(q) =
C√

2π E′ i
ν
2
+ 1

4 Γ(−ν)Dν

(

∓
√

2 iE′ q
)

(3.15)

where C = (E′/2π2)1/4. These functions satisfy the orthonormality and completeness

relations
∫

R

dq χE1

± (q)∗ χE2

± (q) = δ(E1 − E2) and

∫

R

dE χE
±(q)∗ χE

±(q′ ) = δ(q − q′ ), (3.16)

and analogous relations for ηE±. These generalized eigenfunctions belong to the space of

tempered distributions S ′(R). Applying the Gel’fand-Maurin theorem to our inverted

harmonic oscillator we get two expansions for every Schwartz function φ ∈ S(R) given by

φ(q) =
∑

s=±

∫

R

dE
〈

χE
s

∣

∣φ
〉

χE
s (q) and φ(q) =

∑

s=±

∫

R

dE
〈

ηEs
∣

∣φ
〉

ηEs (q) , (3.17)

and two spectral decompositions for Ĥ given by

Ĥ =
∑

s=±

∫

R

dE E |χE
s 〉〈χE

s | and Ĥ =
∑

s=±

∫

R

dE E |ηEs 〉〈ηEs | . (3.18)

As mentioned before, in addition to the eigenfunctions given above the Hamiltonian Ĥ

possesses a set of generalized eigenfunctions corresponding to a discrete set of imaginary

generalized eigenvalues which do not appear in its spectrum. As shown in [8], there is

a connection with the spectrum of the ordinary harmonic oscillator. By introducing the

Hermitean scaling operator

V̂ λ := exp

(

λ

2
(p̂ q̂ + q̂ p̂)

)

(3.19)

for λ ∈ R, we can use Hadamard’s lemma to compute

V̂ λ

(

p̂2 − q̂2
)

V̂ −1
λ = e 2 i λ θ

(

p̂2 − e−4 i λ θ q̂2
)

. (3.20)
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Setting λ = ± π
4θ , we see that the inverted harmonic oscillator Hamiltonian Ĥ is related

to the ordinary harmonic oscillator Hamiltonian Ĥosc = 1
2 (p̂2 + q̂2) through

± i V̂ ± Ĥosc V̂ −1
± = Ĥ (3.21)

with V̂ ± := V̂ ∓π/4θ. This enables us to construct two different sets of generalized eigen-

functions of Ĥ by acting on the eigenfunctions of the harmonic oscillator |m〉 with the

operators V̂ ±. This leads to

Ĥ |f±m〉 := Ĥ V̂ ±|m〉 = ± i V̂ ± Ĥosc|m〉 = ± i θ

(

m+
1

2

)

|f±m〉 , (3.22)

where θ (m+ 1
2) = (2/E) (m + 1

2), m ∈ N0 is the usual harmonic oscillator spectrum.

We can now specify the generalized eigenfunctions corresponding to the imaginary

eigenvalues. Again multiplying Ĥ and Ĥosc with E′ 2 = (E/2)2 and working in the eigen-

basis of q̂ we have

〈q|E′ 2 Ĥosc|n〉 = E′
(

n+
1

2

)

ψosc
n (q) . (3.23)

The orthonormal eigenfunctions of the harmonic oscillator Hamiltonian are given by

ψosc
n (q) = Nn e−(E′/2) q2

Hn

(
√
E′ q

)

, (3.24)

where Nn =
(√
E′/2n n!

√
π

)1/2
and Hn are the usual Hermite polynomials. Applying the

operators V̂ ± to these functions we get

f±n (q) = 〈q|V̂ ∓π/4θ|n〉 = e± i π
8 exp

(

± iπ

4
q ∂q

)

ψosc
n (q) = e± i π

8 ψosc
n

(

e± i π
4 q

)

, (3.25)

and thus

f±n (q) = N±
n e∓ i (E′/2) q2

Hn

(√
± iE′ q

)

(3.26)

with N±
n = (± i )1/4 Nn. These functions belong to the dual Schwartz space S ′(R).

We now note an important property. Since V̂ −1
± = V̂ ∓ = V̂

†
∓ and |f±n 〉† = 〈f±n | we have

〈f±n |Ĥ = 〈n|V̂ ± Ĥ = 〈n|V̂ −1
∓ Ĥ = ∓En 〈f±n | , (3.27)

with En := (2 iE) (n + 1
2). Thus 〈f±n | is an eigenbra of Ĥ corresponding to the general-

ized eigenvalue ∓En. We will see that this subtle issue has some remarkable consequences

and will follow us through our entire treatment. Because of this property, along with the

orthonormality and completeness of the eigenstates |n〉, we have

〈f±n |f∓m〉 = δnm and

∞
∑

n=0

f±n (q)∗ f∓n (q′ ) = δ(q − q′ ) . (3.28)

To further approach our goal of a discrete expansion we will analytically continue

the energy eigenfunctions χE
± and ηE± into the complex energy plane and investigate their

analytic behaviours as functions of E . The distributions f±n will arise as residues of the

functions χE
± and ηE±. We begin with the following lemma proven in [8].
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Lemma 3. The parabolic cylinder functions Dλ(z) are analytic functions of λ ∈ C.

The analytic structure of the functions (3.15) is thus entirely governed by the gamma-

functions. Since the only singularities of Γ(λ) are simple poles at λ = −n, n ∈ N0

with residues

Resλ=−n

(

Γ(λ)
)

=
(−1)n

n!
, (3.29)

and E = iE′ (ν + 1
2), we see that χE

± and ηE± have poles at E = − iE′ (n + 1
2) and

E = iE′ (n+ 1
2) with residues

ResE=− i E′ (n+ 1

2
)

(

χE
±(q)

)

=
C√

2π E′
(−1)n

n!
i−

n
2
− 1

4 Dn

(

∓
√
−2 iE′ q

)

,

ResE= i E′ (n+ 1

2
)

(

ηE±(q)
)

=
C√

2π E′
(−1)n

n!
i

n
2
+ 1

4 Dn

(

∓
√

2 iE′ q
)

. (3.30)

Now using

Dn(z) = 2−n/2 e−z2/4Hn

(

z
/
√

2
)

(3.31)

for n ∈ N0, we find

ResE=−En

(

χE
±(q)

)

= c−n f
−
n and ResE=En

(

ηE±(q)
)

= c+n f
+
n , (3.32)

where the constants c±n can be gleamed off from (3.26), (3.30) and (3.31).

We would now like to extend the integration over R to a closed contour integral

in (3.17), and then apply the residue theorem to get a discrete expansion. However, the

integral over the arc at infinity must not contribute to the contour integral. To characterize

this property, we introduce two Hardy classes of functions H2
± which may be defined as fol-

lows [5]. Given a function f(E) of the real variable E which admits an analytic continuation

into the open upper complex half-plane, define the function

I+(y) =

∫

R

dx
∣

∣f(x+ i y)
∣

∣

2
(3.33)

of y > 0. Then f(E) is in the Hardy class from above H2
+ if and only if the integrals (3.33)

are uniformly bounded, or equivalently

sup
y>0

I+(y) <∞ . (3.34)

The Hardy class from below H2
− is defined in a similar manner, by substituting I+(y) with

the function I−(y) := I+(−y).
To make sense of the contour integral we define the spaces

Φ− =
{

φ ∈ S(Rq)
∣

∣ 〈χE
±|φ〉 ∈ S(RE) ∩H2

−
}

,

Φ+ =
{

φ ∈ S(Rq)
∣

∣ 〈ηE±|φ〉 ∈ S(RE) ∩H2
+

}

, (3.35)

which are both dense in L2(R). Using the residue theorem one then proves the following

result [7, 8].
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Theorem 3. For any functions φ± ∈ Φ±, one has the expansions

φ±(q) =
∞
∑

n=0

〈f∓n |φ±〉 f±n (q) . (3.36)

With these expansions we are now almost able to complete the proof of the duality

covariance of the quantum field theory in Minkowski spacetime. What remains to show is

how these expansions can be applied to Schwartz functions in S(R2), such that each term

which arises is a generalized eigenfunction of the operators D
2 and D̃

2.

3.3 Resonance expansion of Wigner distributions

In order to achieve a discrete generalized eigenfunction expansion for functions in an ap-

propriate dense subspace of L2(R2), we will again use the Weyl-Wigner correspondence.

First of all, we have to relate the domain of D
2 and D̃

2 to the domain of Ĥ . For this, we

define the space

L2(R) ⊗ L2(R)∨ =

{

∑

k,l∈N0

|ψk〉〈ϕl|
∣

∣ |ψk〉 ∈ L2(R) , 〈ϕl| ∈ L2(R)∨
}

, (3.37)

which contains all possible linear combinations of tensor products between functions in

L2(R) and its dual vector space L2(R)∨. This space is isomorphic to L2(R2) and we may

switch between these spaces via the Weyl-Wigner correspondence. We may thus identify

L2(R2) with the space of Wigner distributions {W[φ̂ ] | φ̂ ∈ L2(R)⊗L2(R)∨ }. In a similar

vein, by restricting to compact operators, we may identify the Schwartz space S(R2) with

S(R) ⊗ S(R)∨.

Remark 1. The integral representation [16]

W[ |ψ〉〈ϕ| ] =
1

2π

∫

R

dk e i k x 〈t− θ k/2|ψ〉 〈ϕ|t + θ k/2〉 (3.38)

can be used to define the Wigner distribution of generalized functions. In particular, it can

be extended to a map on the space of tempered distributions W : S ′(R)⊗S ′(R)∨ → S ′(R2).

Via (2.23), these extensions also define a continuous star product on algebras of generalized

functions.

Lemma 4. The distributions f±n,m(x) defined by

f±n,m := W[ |f±n 〉〈f∓m| ] = W[ V̂ ±|n〉〈m|V̂ −1
± ] (3.39)

are generalized eigenfunctions of D
2 and D̃

2 with

D
2f±n,m(x) = ±En f

±
n,m(x) and D̃

2f±n,m(x) = ±Em f±n,m(x) , (3.40)

where

En = 2 iE

(

n+
1

2

)

. (3.41)
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Proof. We use (3.1) to find

D
2f±n,m = E2

W[ Ĥ |f±n 〉〈f∓m| ] and D̃
2f±n,m = E2

W[ |f±n 〉〈f∓m|Ĥ ] , (3.42)

and from (3.27) the generalized eigenvalue equations (3.40) follow.

Remark 2. One may wonder why we do not consider the more general functions f s,s′
n,m

given by f s,s′
n,m = W[V̂ s|n〉〈m|V̂ −1

s′ ] with s, s′ = ±. As is shown in appendix A (Lemma 6),

the distributions f+,−
n,m and f−,+

n,m vanish identically, and only the generalized eigenfunctions

f±n,m := f±,±
n,m remain.

The resonance expansion derived in section 3.2 above can now be applied to Wigner

distributions. For brevity, we will assume that φ̂ ∈ S(R)⊗S(R)∨ is a rank one operator φ̂ =

|ψ〉〈ϕ|, but the extension to general φ̂ follows straightforwardly by linearity. Expanding φ̂

in parabolic cylinder functions, we have either the expansion

φ̂ =
∑

s,s′=±

∫

R

dE
∫

R

dE ′ |χE
s 〉 〈χE

s |ψ〉 〈ϕ|χE ′

s′ 〉 〈χE ′

s′ | (3.43)

or

φ̂ =
∑

s,s′=±

∫

R

dE
∫

R

dE ′ |ηEs 〉 〈ηEs |ψ〉 〈ϕ|ηE
′

s′ 〉 〈ηE
′

s′ | . (3.44)

The other two possible combinations are excluded since they would lead to expansions in

the functions f±,∓
n,m (x) for the Wigner distributions, which vanish by Remark 2 above. Now

closing the contour of integration over E in the lower complex half-plane and over E ′ in the

upper complex half-plane in the expansion (3.43), and over E in the upper half-plane and

over E ′ in the lower half-plane in the expansion (3.44), we find the resonance expansions

φ̂ =

∞
∑

n,m=0

ψ+
n ϕ

−
m

∗ |f−n 〉〈f+
m| and φ̂ =

∞
∑

n,m=0

ψ−
n ϕ

+
m

∗ |f+
n 〉〈f−m| (3.45)

on Φ− ⊗ Φ∨
+ and Φ+ ⊗ Φ∨

−, respectively, where

ψ±
n := 〈f±n |ψ〉 and ϕ±

m
∗ := 〈ϕ|f±m〉 . (3.46)

A detailed description of the appropriate domain for both expansions is given in section 4.

Theorem 4. For the Wigner distributions φ = W[φ̂ ], the resonance expansions corre-

spond to

φ(x) =

∞
∑

n,m=0

φ+
m,n f

−
m,n(x) and φ(x) =

∞
∑

n,m=0

φ−m,n f
+
m,n(x) (3.47)

on Φ− ⊗ Φ∨
+ and Φ+ ⊗ Φ∨

−, respectively, where

φ±m,n := 〈f±m,n|φ〉 =

∫

R2

dx f±m,n(x)∗ φ(x) . (3.48)
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Proof. On the one hand, using completeness we have

φ(x) =

∞
∑

n,m=0

W[ |f∓m〉 〈f±m|ψ〉 〈ϕ|f∓n 〉 〈f±n | ](x) =

∞
∑

n,m=0

ψ±
m ϕ∓

n
∗ f∓m,n(x) . (3.49)

On the other hand, using (3.38) one has

f±n,m(x)∗=W[|f±n 〉〈f∓m|](x)∗=
1

2π

∫

R

dk e i k x〈t− θk/2|f∓m〉〈f±n |t+ θk/2〉=f∓m,n(x), (3.50)

and we get

∫

R2

dx f±m,n(x)∗ φ(x) =

∫

R2

dx f∓n,m(x) ⋆ φ(x)

=

∫

R2

dx

∞
∑

k=0

W[ |f∓n 〉 〈f±m|ψ〉 〈ϕ|f∓k 〉 〈f±k | ](x)

=

∫

R2

dx

∞
∑

k=0

ψ±
m ϕ∓

k
∗ f∓n,k(x) . (3.51)

Since
∫

R2 dx f±k,l(x) = δkl, the result now follows.

Corollary 1. The resonance expansions in the space of Wigner distributions are given by1 =
∞
∑

n,m=0

|f−n,m〉〈f+
n,m| and 1 =

∞
∑

n,m=0

|f+
n,m〉〈f−n,m| (3.52)

on Φ− ⊗ Φ∨
+ and Φ+ ⊗ Φ∨

−, respectively, with the notation f±n,m(x) = 〈x|f±n,m〉.

3.4 Regularization

We are now ready to construct the duality invariant regularization of our quantum field

theory. As shown in section 3.3 above, instead of a unique expansion as in Euclidean

space [26], we now have two distinct resonance expansions (3.52) on the space of Wigner

distributions. However, it is easily checked using Lemma 4 that both expansions individu-

ally lead to a free action (2.5) which is not manifestly real. We will circumvent this problem

in the following way, defering a detailed technical analysis to section 4. The idea is to work

on a suitable dense domain Φ wherein both resonance expansions are possible. Naively, this

space is the intersection of the spaces Φ− ⊗ Φ∨
+ and Φ+ ⊗ Φ∨

−, but this definition is prob-

lematic due to the fact that the Hardy spaces have trivial intersection H2
+ ∩H2

− = {0} [5]

(see also [7, Prop. 4]). In section 4.2 we will define Φ more precisely.

The resonance expansion on the space Φ is given by inserting1 =
1

2

∑

s=±

∞
∑

n,m=0

|f s
m,n〉〈f−s

m,n| . (3.53)
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One then readily checks the manifest reality of the action functional S0[φ] on the field

domain Φ as

S0 = 〈φ|σD
2 + (1 − σ) D̃

2 + µ2 |φ〉

=
1

2

∞
∑

n,m=0

[

(

σ Em + (1 − σ) En + µ2
)

〈φ|f+
m,n〉 〈f−m,n|φ〉

+
(

− σ Em − (1 − σ) En + µ2
)

〈φ|f−m,n〉 〈f+
m,n|φ〉

]

(3.54)

=
1

2

∞
∑

n,m=0

[

(

σEm + (1 − σ)En + µ2
)

φ+
m,n

∗φ−m,n +
(

σEm + (1 − σ)En + µ2
)∗
φ−m,n

∗φ+
m,n

]

,

where we have used E∗
n = −En. Thus both resonance expansions together are required to

yield a manifestly real action.

In this basis the formal functional integration measure in (2.16) may be represented as

Dφ Dφ∗ =

∞
∏

n,m=0

∏

s=±
dφs

n,m dφs
n,m

∗ , (3.55)

and there are two non-vanishing free propagators given by

C±(n,m) =
〈

φ±m,n
∗
φ∓m,n

〉

= 2 i
(

± (σ Em + (1 − σ) En) + µ2
)−1

. (3.56)

They also arise by representing the operator (σD
2 + (1− σ) D̃

2 +µ2)−1 in the two distinct

basis sets as

C±(n,m) = 〈f∓m,n|2 i
(

σD
2 + (1 − σ) D̃

2 + µ2
)−1|f±m,n〉 . (3.57)

Thus we have two distinct propagators which, as we will see in section 4, correspond to

incoming and outgoing particle and antiparticle asymptotic states. The spacetime repre-

sentation of these propagators, in the limiting case σ = 1 of a background electric field

alone, is derived in appendix B in terms of confluent hypergeometric functions.

Following [26], the regularization scheme we shall employ is based on the opera-

tor (2.15). Each of the operators D
2 and D̃

2 cut off the high energy modes of one of

the indices on the basis functions f±n,m. The regulated propagators in Minkowski space are

thus defined by

C±
Λ (n,m) := 〈f∓m,n|2 i

(

σD
2 + (1 − σ) D̃

2 + µ2
)−1

L
(

Λ−2 |D2 + D̃
2|

)

|f±m,n〉

=
2 i

±
(

σ Em + (1 − σ) En

)

+ µ2
L

(

Λ−2 |En + Em|
)

, (3.58)

where Λ ∈ R is a cut-off parameter. The cut-off function L is smooth and monotonically

decreasing, with L(y) = 1 for y < 1 and L(y) = 0 for y > 2. Since the differential operator

D
2 + D̃

2 is invariant under Fourier transformation up to a rescaling, this regularization is

duality invariant.
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In this basis each Feynman amplitude can be represented in the schematic form

∞
∑

n1,m1,...,nK ,mK=0

∑

s1,...,sK=±

K
∏

k=1

Csk

Λ (nk,mk) (· · · ) , (3.59)

where (· · · ) denotes the contributions from the noncommutative interaction vertices derived

from (2.9) and combinatorial factors. Since the propagator Cs
Λ(n,m) given by (3.58) is

nonzero only if |En + Em| = 2|E| (n +m + 1) < 2|Λ|, which at finite Λ is true solely for a

finite number of distinct values of (n,m) ∈ N
2
0, every Feynman amplitude is represented by

a finite sum. This completes the proof of Theorem 2 and hence establishes the quantum

duality in Minkowski spacetime.

4. Configuration space

We will now clear up a few loose ends in our analysis of the previous section. By Propo-

sition 1, the resonance expansion in generalized eigenfunctions of the operators D
2 and D̃

2

can be obtained by just naively applying Wick rotations of the corresponding results in

Euclidean space. However, the expansion in Minkowski signature involves a doubling of

the effective field degrees of freedom, which does not follow by a simple Wick rotation.

We will argue below that this doubling is due to a separation of time flow, wherein one

expansion corresponds to motion in a given time direction while the other expansion corre-

sponds to motion in the opposite time direction. We will also give a precise definition and

rigorous, analytic description of the configuation space Φ, and show that the restriction

of the functional integral to this domain may be regarded as an ingredient of the duality

invariant regularization, in the sense that Φ is a dense subspace of L2(R2).

4.1 CT symmetry

We begin with a heuristic explanation for the doubling of degrees of freedom ensuing from

the resonance expansion (3.53) on the configuration space Φ. We recall that the two sets of

eigenfunctions in (3.15) are related by ηE±(q) = χE
±(q)∗, so that the two subspaces in (3.35)

are related by Φ+ = Φ−†. It is for this reason that each expansion in (3.52) on its own yields

a complex action, while the sum is manifestly real. On the other hand, the transformation

χE
±(q) 7→ ηE±(q) is equivalent to the change ν + 1 7→ (ν + 1)∗ = −ν of the parameter (3.13).

In turn, this is equivalent to reflection of the electric field E 7→ −E. Now using the explicit

form of the generalized eigenfunctions f±m,n (Proposition 1), we see that the time-reversal

operator T : t 7→ −t leads to

T : f±m,n
t7→−t−−−→ f±n,m . (4.1)

On the other hand, under the charge conjugation transformation C : E 7→ −E we get

C : f±m,n(t, x)
E 7→−E−−−−→ f∓m,n(−t, x) = f∓n,m(t, x) . (4.2)

Thus by applying time-reversal plus charge conjugation we get the mapping f±m,n 7→ f∓m,n.

In particular, the spaces Φ+ and Φ− are in this way related via a C T -transformation, and

one has ηE±(q) = C TχE
±(q).

– 18 –



J
H
E
P
0
2
(
2
0
0
9
)
0
3
1

The domain Φ is thus the smallest domain of fields in which a C T -invariant resonance

expansion is possible. The expansion coefficients in (3.47) are related to each other by

φ∓n,m = C Tφ±n,m := 〈C T f±n,m|φ〉 . (4.3)

After fixing a time orientation, we can thus interpret C+ as the propagator for incom-

ing particles and C− as the propagator for outgoing antiparticles. This is consistent with

the properties

C±(−x;−x′ ) = C±(x;x′ ) and C±(t, x; t′, x′ )∗ = C∓(−t, x;−t′, x′ ) (4.4)

which can be read off from (B.7). Note that, by Proposition 1, the generalized eigenfunc-

tions f±m,n have the asymptotic behaviour

f±m,n(t→ ±∞, x) ∼ e∓ i E t2 × (polynomial in t) . (4.5)

This behaviour looks somewhat like the condition for outgoing and incoming scattering

states, except for the t2 dependence in the exponential and the polynomial factor which

reflect the dipole nature of the quanta in this field theory.

4.2 Definition using Gel’fand-Shilov spaces

We will now construct a suitable configuration space of fields Φ ⊂ S(R2) which defines a

rigged Hilbert space

Φ ⊂ L2
(

R
2
)

⊂ Φ′ . (4.6)

This field domain will also define the space of matrices M to be integrated over in the

matrix model of section 5. As we demonstrate below, the appropriate configuration space

Φ can be identified with a subalgebra of one of the Gel’fand-Shilov spaces Sα
α (R2) with

α ≥ 1
2 , which are subspaces of Schwartz space S(R2) = S∞

∞ (R2). Their suitability rests on

the fact that they are closed under Fourier transformation and the noncommutative star

product, and their elements admit an expansion in terms of the generalized eigenfunctions

that we have constructed in this paper.

We begin by reviewing the general definition of the Gel’fand-Shilov spaces Sα
α (Rd),

d ≥ 1 [21], and the properties of them that we will need. This space is the set of all smooth

functions φ(q) on R
d for which there exists constants C > 0 and M > 0 such that

∥

∥qm ∂n
q φ

∥

∥

∞ ≤ CM |n|+|m| nαn mαm (4.7)

for all n,m ∈ N
d
0, where the norm is the usual supremum norm on L∞(Rd). Here we use the

conventional multi-index notation where, for n = (n1, . . . , nd) ∈ N
d
0 and q = (q1, . . . , qd) ∈

R
d, we set ∂n

q φ(q) = ∂n1
q1

· · · ∂nd
qd
φ(q), |n| = n1 + · · · + nd, nαn = nα n1

1 · · ·nα nd

d , and so

on (with the convention nα ni

i := 1 for ni = 0). The space Sα
α (Rd) can be realized as the

inductive limit of the family of Banach spaces Sα,M
α (Rd), M > 0 consisting of smooth

functions φ(q) on R
d with finite norm

‖φ‖α,M := sup
n,m∈Nd

0

M |n|+|m|

nαn mαm

∥

∥qm ∂n
q φ

∥

∥

∞ . (4.8)
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The topology on Sα
α (Rd) is then the inductive limit topology. This makes Sα

α (Rd) into a

Fréchet space which is a subspace of Schwartz space S(Rd).

The Fourier transform on Sα
α (Rd) is defined analogously to (2.4), and it defines a topo-

logical isomorphism. Thus the spaces Sα
α (Rd) form a family of Fourier transform invariant

spaces contained in the Schwartz class S(Rd), which are closed under differentiation and

multiplication by a polynomial. They are thus well-suited as configuration spaces for (free)

duality covariant field theories. The Gel’fand-Shilov spaces contain quasi-analytic classes,

in the sense that Sα
α (Rd) for 1

2 ≤ α ≤ 1 are subspaces of the space of entire functions

on C
d restricted to R

d. The smallest non-trivial Gel’fand-Shilov space is S1/2
1/2 (Rd), which

contains, for example, the Gaussian fields φ(q) = e−q2

. The spaces Sα
α (Rd) have been

previously proposed as suitable test function spaces for non-local relativistic quantum field

theories [4, 38].

The (strong) dual Sα
α (Rd)′ of the Gel’fand-Shilov class Sα

α (Rd) is a space of tempered

ultra-distributions of Roumieu type. It contains the space of tempered distributions S ′(Rd).

The Fourier transform is extended to a continuous linear transform on Sα
α (Rd)′ by means

of the duality formula

〈φ|F [F ]〉 := 〈F [φ]|F 〉 (4.9)

for F ∈ Sα
α (Rd)′ and φ ∈ Sα

α (Rd). It yields an isomorphism Sα
α (Rd)′ → Sα

α (Rd)′.
Let us now specialize to the one-dimensional case d = 1. Then the topological algebras

Sα
α (R) have the remarkable feature that the harmonic oscillator eigenfunctions (3.24) form

a basis for the expansion of fields in Sα
α (R) [25]. Since these eigenfunctions also form a

complete orthonormal system in L2(R), it follows that the triplet of spaces

Sα
α (R) ⊂ L2(R) ⊂ Sα

α (R)′ (4.10)

is a rigged Hilbert space. The corresponding expansion coefficents 〈n|φ〉 for n ∈ N0 and

φ ∈ Sα
α (R) may be characterized as follows. The nuclear space Mα

α of sequences of ultrafast

falloff is the inductive limit of the family of spaces Mα,κ
α , κ > 0 consisting of complex

sequences {an}n∈N0
of finite norm

∥

∥{an}
∥

∥

κ
=

( ∞
∑

n=0

|an|2 e 2Ω(κ
√

n )

)1/2

, (4.11)

where we have defined the function

Ω(y) := sup
n∈N0

log
(

yn n−αn
)

(4.12)

for y > 0. That this space can be identified with the Gel’fand-Shilov space Sα
α (R) is the

content of the following crucial result, proven in [25].

Theorem 5. The mapping φ 7→ an = 〈n|φ〉, n ∈ N0 defines a topological isomorphism on

the spaces Sα
α (R) → Mα

α.

When an = 〈n|φ〉 for φ ∈ Sα
α (R), we will denote the norm (4.11) by ‖φ‖κ. This char-

acterization leads to the following result governing the generalized eigenfunction expan-

sions (3.17), which enables us to replace both spaces Φ± in (3.35) with the Gel’fand-Shilov

space Sα
α (R).
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Theorem 6. For any function φ ∈ Sα
α (R), one has:

(a) lim
E→∞

〈

ηE±
∣

∣φ
〉

= 0, where the limit is taken over generalized eigenvalues E in the upper

complex half-plane; and

(b) lim
E→∞

〈

χE
±
∣

∣φ
〉

= 0, where the limit is taken over generalized eigenvalues E in the lower

complex half-plane.

Proof. Since ηE± ∈ S ′(R) ⊂ Sα
α (R)′ and φ ∈ Sα

α (R), we have the Parseval equation [25]

〈

ηE±
∣

∣φ
〉

=

∞
∑

n=0

〈

ηE±
∣

∣n
〉

〈n|φ〉 (4.13)

with 〈ηE±|n〉 =
∫

R
dq ηE±(q)∗ ψosc

n (q). Using the Schwarz inequality and Theorem 5, it follows

that for every κ > 0 one has

∣

∣

〈

ηE±
∣

∣φ
〉 ∣

∣ ≤
∞
∑

n=0

∣

∣

〈

ηE±
∣

∣n
〉 ∣

∣

∣

∣ 〈n|φ〉
∣

∣

≤
( ∞

∑

n=0

∣

∣

〈

ηE±
∣

∣n
〉 ∣

∣

2
e−2Ω(κ

√
n )

)1/2 ( ∞
∑

n=0

∣

∣ 〈n|φ〉
∣

∣

2
e 2Ω(κ

√
n )

)1/2

= ‖φ‖κ

( ∞
∑

n=0

∣

∣

〈

ηE±
∣

∣n
〉 ∣

∣

2
e−2Ω(κ

√
n )

)1/2

. (4.14)

We will now substitute the explicit form of the generalized eigenfunctions ηE±(q) from (3.15).

Using the integral representation (3.14) for the parabolic cylinder functions, it is

straightforward to derive the integral identity

∫

R

dt Dν(t) = −2
√
π 2

1

2
(ν+1)

ν Γ
(

− 1
2 ν

) . (4.15)

We will also use the estimate
∥

∥ψosc
n

∥

∥

∞ ≤ C nk , (4.16)

for some constants C > 0 and k ∈ N which are independent of n. For brevity, in what

follows we use the same symbol C to absorb all constants independent of n and of the

complex parameter ν in (3.13). We then find the bound

∣

∣

〈

ηE±
∣

∣n
〉 ∣

∣ ≤ C nk
∣

∣

∣

e− iπ ν/4 2ν/2 Γ(−ν)
ν Γ

(

− 1
2 ν

)

∣

∣

∣
. (4.17)

Using the Stirling expansion of the gamma-functions for |ν| → ∞ and the defini-

tion (4.12), we then have

∣

∣

〈

ηE±
∣

∣n
〉 ∣

∣

2
e−2Ω(κ

√
n ) ≤ C n2k

∣

∣ e iπ ν/2 ν−ν−2 e ν
∣

∣ e−2Ω(κ
√

n )

= C
∣

∣ e iπ ν/2 ν−ν−2 e ν
∣

∣

n2k

(

sup
m∈N0

κm nm/2m−α m
)2
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≤ C
∣

∣ e iπ ν/2 ν−ν−2 e ν
∣

∣

n2k (2k + 2)4α (k+1)

κ4(k+1) n2k+2

≤ C
∣

∣ e iπ ν/2 ν−ν−2 e ν
∣

∣

1

n2
, (4.18)

where we have chosen κ ≥ (2k + 2)α. Substituting (4.18) back into (4.14), since the series
∑

n∈N

1
n2 converges we have finally

∣

∣

〈

ηE±
∣

∣φ
〉 ∣

∣ ≤ C ‖φ‖κ

∣

∣ e iπ ν/4 ν−
1

2
ν−1 e ν/2

∣

∣ . (4.19)

The right-hand side of (4.19) vanishes in the limit Re(ν) → +∞, which proves (a). With

the same techniques, an analogous bound for |〈χE
±|φ〉| is obtained using the explicit form

for the generalized eigenfunctions χE
±(q) in (3.15), which now vanishes for Re(ν) → −∞

and establishes (b).

Corollary 2. For any function φ ∈ Sα
α (R), one has the resonance expansion

φ(q) =
1

2

∑

s=±

∞
∑

n=0

〈

f−s
n

∣

∣φ
〉

f s
n(q) . (4.20)

Proof. From the estimate (4.19) and the analogous one for |〈χE
±|φ〉|, together with the

explicit forms of the generalized eigenfunctions in (3.15), we see that the integrands of (3.17)

evaluated on an arc of radius r → ∞ in the upper or lower half-planes respectively vanish

much faster than r−1−ǫ for ǫ > 0. As in the proof of [7, Thm. 2], the contributions to the

contour integrals from the arcs at infinity thus vanish.

We can now transport the resonance expansion (4.20) to the appropriate space of

Wigner distributions, exactly as we did in section 3.3. The following result, whose proof

may be found in [41], is helpful for this purpose.

Lemma 5. Let ψ,ϕ ∈ Sα
α (R)′. Then ψ ∈ Sα

α (R) if and only if W[ |ψ〉〈ϕ| ] ∈ Sα
α (R2).

It follows from Lemma 5 that the Wigner distribution (3.50) induces a transformation

W : Sα
α (R) ⊗ Sα

α (R)′ −→ Sα
α

(

R
2
)

(4.21)

for α ≥ 1
2 . In this way the space of duality covariant noncommutative scalar fields can be

identified with the subspace Φ = W
(

Sα
α (R)⊗Sα

α (R)∨
)

of the Gel’fand-Shilov space Sα
α (R2).

This defines a topological algebra which is continuously closed under the star product,

because of the projector property f±n,m⋆f
±
k,l = δmk f

±
n,l. This property is consistent with the

result of [38] that the star product has a unique continuous extension to any Gel’fand-Shilov

space Sα
α (R2). Using Theorem 5, the corresponding space of sequences {φ±n,m}n,m∈N0

can be

identified with a subspace M of the nuclear space of sequences on N
2
0 of ultrafast falloff [25].
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5. The two-matrix model

As in the Euclidean case [30], the formalism developed in this paper enables a reformulation

of the duality covariant quantum field theory as a succinct matrix model, though now with

some crucial differences. Thus far we have used the Weyl-Wigner correspondence at the

self-dual point θ = 2/E to find the generalized eigenbasis of the operator D
2, which depends

on the absolute value of the electric field E. However, the star product appearing in the

interaction term (2.9) does not depend on the electric field, but on the noncommutativity

parameter θ. The generalized eigenbasis of D
2 has a very nice projector property under

the star product if the noncommutativity parameter is set equal to 2/E. For θ 6= 2/E,

this is no longer true in general, while the free part of the action (2.5) is still diagonal. We

will now reverse the logic. We will suppose that the basis functions f±n,m are defined with

respect to the electric field 2/θ 6= E. In this case the complete action can be mapped onto

a coupled complex two-matrix model.

We will fix E 6= ± 2/θ generically, and assume that E, θ > 0. The interaction part of

our action (2.9) can be mapped onto a matrix model by noting the identities

∫

R2

dx f s
n,m(x) = δnm ,

f s
n,m ⋆ f s

k,l = δmk f
s
n,l ,

f s
n,m

∗ = f−s
m,n (5.1)

for s = ±. Thus the only surviving combinations for star products of four distributions

f s
n,m are

f±n1,m1
⋆ f±n2,m2

⋆ f±n3,m3
⋆ f±n4,m4

= δn2,m1
δn3,m2

δn4,m3
f±n1,m4

. (5.2)

By using one of the two expansions φ(x) =
∑

n,m∈N0
f s

n,m(x)φ−s
n,m for the scalar fields,

we can express the interaction term
∫

R2 dx (φ∗ ⋆ φ ⋆ φ∗ ⋆ φ)(x) as a matrix product

Tr
(

φ†−s φs φ
†
−s φs

)

for s = ± and (φs)n,m := φs
n,m. The interaction

∫

R2 dx (φ∗⋆φ∗⋆φ⋆φ)(x)

gives Tr
(

φ†−s φ
†
−s φs φs

)

. On the domain Φ, the action (2.9) can thus be written as a ma-

trix model

Sint =
1

2

∑

s=±
Tr

(

αφ†−s φs φ
†
−s φs + β φ†−s φ

†
−s φs φs

)

. (5.3)

The free action (2.5) for E 6= ± 2/θ can also be written as a matrix product in the

following way. With the help of the operators (A.9) we can write

D
2 =

1

4θ

[

(2+θE)2
(

a+
1 a

−
1 +

i

2

)

+(2 − θE)2
(

a+
2 a

−
2 +

i

2

)

+
(

θ2E2−4
)(

a+
1 a

+
2 +a−1 a

−
2

)

]

. (5.4)

Note that at the two self-dual points θ = ± 2/E the free action simplifies considerably, since

D
2 = 2E

(

a+
1 a

−
1 +

i

2

)

for θ = 2/E ,

D
2 = 2E

(

a+
2 a

−
2 +

i

2

)

for θ = −2/E . (5.5)
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The corresponding expressions for the operator D̃
2 are obtained by interchanging a±1 ↔ a±2

above. Using (A.5) we find

a±1 a
±
2 f

s
n,m = i s

√

n+
1

2
± s

2

√

m+
1

2
± s

2
f s

n±s,m±s , (5.6)

with the abbreviated notation n± s := n± 1 for s = + and n± s := n∓ 1 for s = −. The

free action of our model can thus be expressed as

S0 =
1

8θ

∑

s=±
Tr

(

4θ µ2 φ†s φ−s +
(

θ2E2 − 4
) (

φ†s Γ†
s φ−s Γs + φ−s Γ†

s φ
†
s Γs

)

(5.7)

+ s
(

(2 − θ E)2 + 8σ θ E
)

φ†s E φ−s + s
(

(2 + θ E)2 − 8σ θ E
)

φ−s E φ†s
)

,

where we have introduced the matrices

(Γs)n,m = i s
√
m+ 1 δn,m+1 and (E)n,m = i

(

n+
1

2

)

δn,m . (5.8)

This action has a similar structure to that of the Euclidean case [30].

The domain of this matrix model is the space of (infinite) matrices M described in

section 4.2. Let us now set α = 1, β = 0 in the interaction term (5.3), σ = 1 in the free

part (5.7), and consider the matrix model at the self-dual point θ = +2/E. The full action

is then given by

S∨ =
1

2

∑

s=±
Tr

(

4s θ−1 φ†s E φ−s + µ2 φ†s φ−s + g2
(

φ†s φ−s

)2
)

. (5.9)

The matrix model at the other self-dual point θ = −2/E is gotten by interchanging φ†s ↔
φ−s in (5.9). The action (5.9) admits a continuous GL(∞) × GL(∞) symmetry group

defined by the transformations

φs 7−→ φs Us and φ†s 7−→ U−1
−s φ

†
s , (5.10)

with U± ∈ M∩GL(∞). Thus the self-dual matrix model describes an integrable quantum

field theory, just as in the Euclidean case [29, 30]. By [28] and the discussion of section 4.1,

the unitary U(∞)×U(∞) subgroup of this symmetry group consists of matrices U± corre-

sponding to canonical transformations of R
2 along the forward/backward light-cone direc-

tion. Note that the self-dual matrix model is also invariant under a discrete Z2 symmetry

group generated by the combined time-reversal and charge conjugation transformation

C T :
(

φs , φ
†
s

)

7−→
(

φ−s , φ
†
−s

)

, θ 7−→ − θ . (5.11)

6. Generalization to higher dimensions

There is a natural UV/IR-duality invariant extension of our 1 + 1-dimensional model to

higher dimensional Minkowski spacetime, which combines our result with that of [26] for the

Euclidean case. We will demonstrate this in D = 2d+ 2 dimensional Minkowski spacetime
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with coordinates x = (xµ), µ = 0, 1, . . . , 2d + 1, x0 = t and derivatives ∂µ = ∂/∂xµ. The

extended field theory in D-dimensional Minkowski spacetime has a similar form as before.

The interactions are formally the same as in (2.9), while the free part of the action

now reads

S0 =

∫

RD

dx φ∗(x)
(

σK
2 + (1 − σ) K̃

2 + µ2
)

φ(x) (6.1)

with K
2 := 1

2 (− i ∂µ + Fµν x
ν)2 and the D × D antisymmetric electromagnetic tensor in

Jordan normal form

(Fµν) =

























0 E

−E 0

0 B1

−B1 0
. . .

0 Bd

−Bd 0

























(6.2)

for E,Bk > 0. The differential operator K̃
2 is defined below. The coordinate system on

R
D is chosen in such a way that the noncommutativity parameter matrix (θµν) appearing

in the star product is in its canonical skew-diagonal form

(

θµν
)

=

























0 θ0
−θ0 0

0 θ1
−θ1 0

. . .

0 θd

−θd 0

























, (6.3)

with θa > 0.

With these definitions the operator K
2 decomposes into a sum

K
2 = D

2 +

d
∑

k=1

D
2
E,k (6.4)

of d copies of the Landau Hamiltonian

D
2
E,k =

1

2

[

−
(

∂2
2k+∂2

2k+1

)

−2 iBk

(

x2k+1∂2k−x2k∂2k+1

)

+B2
k

(

(

x2k
)2

+
(

x2k+1
)2

)]

(6.5)

for k = 1, . . . , d, and the Klein-Gordon operator D
2 introduced in section 2. The classical

duality is now proven in the same way as before. The self-dual point is given by (θµν) =

± 2(Fµν)−1, or equivalently by θ0 = ± 2/E and θk = ± 2/Bk, k = 1, . . . , d, where the sign

has to be the same for all θa, a = 0, 1, . . . , d.
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Eigenfunctions of the operator K
2 are now given by tensor products of eigenfunctions

of D
2 and D

2
E,k for k = 1, . . . , d, analogously to the Euclidean analysis of [26]. The Landau

Hamiltonian D
2
E,k describes the motion of a charged particle in the two-dimensional Eu-

clidean (x2k, x2k+1)-plane in the presence of a background magnetic field with field strength

2Bk, and its eigenfunctions are the well-known Landau wavefunctions fmk,nk
(x2k, x2k+1),

mk, nk ∈ N0. These functions are simultaneous eigenfunctions of the operators D
2
E,k and

D̃
2
E,k := D

2
E,k

∣

∣

Bk→−Bk
with eigenvalues 2Bk (mk + 1

2 ) and 2Bk (nk + 1
2 ), respectively. These

definitions give rise to a new operator K̃
2 obtained from K

2 by substituting D̃
2 for D

2 and

D̃
2
E,k for D

2
E,k. Simultaneous generalized eigenfunctions of K

2 and K̃
2 are therefore given

by tensor products

f±p (x) =
(

f±m0,n0
⊗ fm1,n1

⊗ · · · ⊗ fmd,nd

)

(x) (6.6)

with p := (m,n) = (m0,m1, . . . ,md, n0, n1, . . . , nd) ∈ N
D
0 . The corresponding generalized

eigenvalue equations are

K
2f±p =

(

± 2 iE

(

m0 +
1

2

)

+

d
∑

k=1

2Bk

(

mk +
1

2

)

)

f±p =: E±(m) f±p ,

K̃
2f±p =

(

± 2 iE

(

n0 +
1

2

)

+
d

∑

k=1

2Bk

(

nk +
1

2

)

)

f±p =: E±(n) f±p . (6.7)

This extended field theory now comprises all the features of our 1+1-dimensional model and

the 2d-dimensional Euclidean model investigated in [26]. Thus it is duality covariant and

has a matrix model representation in terms of the extended Landau basis defined in (6.6).

The Landau wavefunctions fm,n(x, y) form a basis for L2(R2), which simply reflects the

fact that they are the Wigner distributions of the harmonic oscillator eigenoperators |m〉〈n|.
The extended Landau wavefunctions f±p are Wigner distributions of the tensor products

|f±m0
,m1, . . . ,md〉〈f∓n0

, n1, . . . , nd| = |f±m0
〉〈f∓n0

| ⊗ |m1〉〈n1| ⊗ · · · ⊗ |md〉〈nd| . (6.8)

Most of the analysis of the 1+1-dimensional case is now easily generalized to higher dimen-

sions. Each field φ in a suitable domain Φ ⊂ S(RD), dense in L2(RD), can be decomposed as

φ(x) =
1

2

∑

s=±

∑

p∈ND
0

f s
p(x)φ−s

p with φs
p =

∫

RD

dx f s
p(x)∗ φ(x) . (6.9)

The free action takes the form

S0 =
1

2

∑

s=±

∑

p∈ND
0

(

σ Es(m) + (1 − σ)Es(n) + µ2
)

φs
p

∗ φ−s
p , (6.10)

and the two propagators in this basis, given by

C±(p) = 〈f∓p |2 i
(

σ K
2 + (1 − σ) K̃

2 + µ2
)−1|f±p 〉

= 2 i
(

σ E±(m) + (1 − σ)E±(n) + µ2
)−1

, (6.11)
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can be regularized in the same way as before, proving the duality invariance of the higher-

dimensional regularized quantum field theory.

Using the noncommutativity parameters (θµν) for the Wigner transformations and the

star product, the resulting extended Landau wavefunctions obey the same nice projector

property under the star product given by

f±(m,n) ⋆ f
±
(m′,n′ ) = δn,m′ f±(m,n′ ) , (6.12)

where δm,n := δm0,n0
δm1,n1

· · · δmd,nd
. As was shown in [30], the Landau Hamiltonians

D
2
E,k and D̃

2
E,k can be written in terms of standard harmonic oscillator creation and anni-

hilation operators for each k = 1, . . . , d. With the definitions

(Es
0)m,n = i s

(

n0 +
1

2

)

δm,n ,

(Es
k)m,n =

(

nk +
1

2

)

δm,n ,

(Γs
0)m,n = i s

√
n0 + 1 δm0,n0+1 δm1,n1

· · · δmd,nd
,

(Γs
k)m,n =

√
nk + 1 δm0,n0

· · · δmk ,nk+1 · · · δmd,nd
(6.13)

along with F0 = E and Fk = Bk for k = 1, . . . , d, we can thereby map the free part of theD-

dimensional φ⋆4 field theory in Minkowski spacetime onto a two-matrix model with action

S0 =
1

8

∑

s=±

d
∑

a=0

1

θa
Tr

(

4θaµ
2

d+ 1
φ†sφ−s+

(

θ2
aF

2
a −4

)(

φ†sΓ
s
a
†φ−sΓ

s
a+φ−sΓ

s
a
†φ†sΓ

s
a

)

(6.14)

+
(

(2−θaFa)
2+8σθaFa

)

φ†sEs
aφ−s+

(

(2+θaFa)
2−8σθaFa

)

φ−sEs
aφ

†
s

)

,

where (φs)m,n := φs
(m,n) (regarded as a matrix via lexicographic ordering N

D
0 ∼ N0, for

example) and Tr (φs) :=
∑

n∈ND
0

(φs)n,n. Due to (6.12), the interaction terms take the

same form as in (5.3). At the self-dual points given by θa = ± 2/Fa, and with the definition

(Es)m,n =

d
∑

a=0

2Fa (Es
a)m,n = 2

(

i sE

(

n0 +
1

2

)

+

d
∑

k=1

Bk

(

nk +
1

2

) )

δm,n , (6.15)

we obtain the same self-dual two-matrix model as in section 5.

7. Summary and discussion

In this paper we have proven that a noncommutative φ⋆4-theory, describing a charged

scalar boson moving in Minkowski spacetime in the presence of a background electromag-

netic field, is invariant under a special UV/IR duality generated by symplectic Fourier

transformation of fields. This was achieved by extending the methods which were used

in the Euclidean situation [26]. We were able to map our noncommutative field theory

onto a two-matrix model and regularize it in a duality invariant fashion. What makes

the Minkowskian story much more intricate than the Euclidean one is that the Lorentzian
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kinetic operator has a continuous spectrum extended over the whole real line. By analyti-

cally continuing its eigenfunctions into the complex energy plane and closing the integration

contour of the continuous eigenfunction expansion on an infinite arc in the upper or lower

complex half-plane, we get two distinct discrete expansions from the isolated poles on the

imaginary axis. A determination of the resulting generalized functions shows that they

are given by Wick rotated Landau wavefunctions, including a Wick rotation of the back-

ground field. One expansion corresponds to the Wick rotation (x,E) → ( i t, iE) and the

other expansion to (x,E) → (− i t,− iE). This shows that we can map one expansion to

the other by a combined time-reversal plus charge conjugation transformation C T . This

suggests that the corresponding propagators relate the propagation of charged particles

and antiparticles in different time directions respectively. We found an explicit expression

for both propagators in a background electric field alone, and determined explicitly the

appropriate domain for the expansion of noncommutative fields in these “electric Landau

wavefunctions” in terms of Gel’fand-Shilov spaces.

However, a non-trivial result, which doesn’t simply follow by Wick rotation, is that

stability of the theory requires the use of both expansions simultaneously, i.e. we have to

make the expansion in a C T -invariant way. This shows that in Minkowski spacetime we

effectively require twice as many degrees of freedom as compared to the Euclidean case.

This is most apparent in the matrix model representation. While the Euclidean field theory

is a one-matrix model, the Lorentzian field theory is a two-matrix model.

This new matrix basis could now be used to implement the renormalization programme

for noncommutative field theory in Minkowski spacetime. In the same way as the Lan-

dau basis was a crucial ingredient in the proof of the renormalizability of some Euclidean

noncommutative field theories, the electric Landau basis could be used in similar theories

formulated in Minkowski spacetime. One could first examine the Minkowskian version of

original Grosse-Wulkenhaar model [22], which consists in adding an inverted harmonic os-

cillator potential to the kinetic term of a real φ⋆4-theory, as given by the operator (2.15).

The corresponding propagator requires inversion of the analog of the matrix appearing

in (5.7) at σ = 1
2 , and can be found using the techniques of [17]. In this way our formal-

ism describes the appropriate analytic continuation of the Grosse-Wulkenhaar models to

Minkowski signature. Along these lines it is interesting to explore the structure of the pre-

sumably inequivalent quantization of the duality covariant field theory using the S-matrix

formalism in our two-matrix basis. It would also be interesting to see if the exactly solvable

self-dual matrix models of section 5 lead to any different nonperturbative renormalizability

properties compared to the Euclidean case [29]. All of these interesting renormalization

issues are left for future investigations.

We conclude by pointing out an interesting but somewhat unrelated offspring of our

analysis. A corollary of our work is a rigorous mathematical proof of the electric-magnetic

duality of the QED effective action, which states that one can obtain the effective action of

charged particles in an electric background E from that of charged particles in a magnetic
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background B by the substitution B → iE [11]. The effective action is simply given by

Seff = i log

(
∫

Φ
Dφ Dφ∗ e iS0|σ=1

)

= − i log det
(

D
2 + µ2

)

= −
∑

s=±

∞
∑

n=0

i log

(

2 i sE

(

n+
1

2

)

+ µ2

)

, (7.1)

where we have omitted the infinite vacuum contribution in the second line and used the

generalized discrete spectrum in the third line. The techniques developed in this paper

may have further applications in this context.
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A. Generalized eigenfunctions

Given the relation with the inverted harmonic oscillator, it is natural to introduce analogs

of the standard ladder operators. Defining

â± =
1√
2θ

(

p̂ ∓ q̂
)

, (A.1)

one has the commutation relations
[

â− , â+
]

= i (A.2)

and the operator Ĥ can be represented as

Ĥ =
θ

2

(

â+ â− + â− â+
)

. (A.3)

These operators are not ladder operators in the usual sense, since they are not Hermitean

conjugates of one another. Nevertheless, we can construct our basis distributions |f±n 〉 and

〈f±n | in vacuum representations of the algebra (A.2) defined by applying these operators

to states |0,±〉 and 〈0,±|, respectively, which are determined via the conditions

â−s|0, s〉 = 0 ,

〈0, s|â−s = 0 ,

〈0, s|0,−s〉 = 1 (A.4)

for s = ±. The inner product in (A.4) follows again from the fact that 〈f±n | = 〈n|V̂ −1
∓ is

only orthonormal to |f∓n 〉. The generalized eigenstates

|n,+〉 :=
(− i )n√

n!

(

â+
)n|0,+〉 ,

|n,−〉 :=
1√
n!

(

â−)n|0,−〉 ,
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〈n,+| :=
i n

√
n!

〈0,+|
(

â+
)n
,

〈n,−| :=
1√
n!

〈0,−|
(

â−)n
(A.5)

have the desired properties

Ĥ |n,±〉 = ± i θ
(

n+
1

2

)

|n,±〉 ,

〈n,±|Ĥ = ∓ i θ
(

n+
1

2

)

〈n,±| ,
〈n,±|m,∓〉 = δnm . (A.6)

Consequently these states coincide (up to a phase factor) with the distributions |f±n 〉 =

V̂ ±|n〉 and 〈f±n | = 〈n|V̂ −1
∓ constructed using the complex scaling of section 3.2.

The operators â± together with the Weyl-Wigner correspondence now allow us to

construct the generalized functions f±n,m(x) formally via

f±n,m = W[ |n,±〉〈m,∓| ] =
(∓ i )n√
n!m!

W[â±]⋆n ⋆ f±0,0 ⋆W[â∓]⋆m , (A.7)

where W[âs]⋆n denotes the n-fold star product W[âs] ⋆ · · · ⋆ W[âs]. With the notation

x± = t± x and ∂± = ∂t ± ∂x, we find for an arbitrary function f(x) the star products

W[â±](x) ⋆ f(x) =
i

2

(

−
√

θ

2
∂± ± i

√

2

θ
x∓

)

f(x) ,

f(x) ⋆W[â∓](x) =
i

2

(

√

θ

2
∂∓ ∓ i

√

2

θ
x±

)

f(x) . (A.8)

This motivates the definition of new “ladder operators” on x-space given by

a±1 =
i

2

(

−
√

θ

2
∂± ± i

√

2

θ
x∓

)

and a±2 =
i

2

(

√

θ

2
∂∓ ∓ i

√

2

θ
x±

)

. (A.9)

The new operators a±i , i = 1, 2 obey the nonvanishing commutation relations [a−i , a
+
j ] =

i δij , and with θ = 2/E our basic differential operators can be expressed as

D
2 = 2E

(

a+
1 a

−
1 +

i

2

)

and D̃
2 = 2E

(

a+
2 a

−
2 +

i

2

)

. (A.10)

The conditions (A.4) translated into this language respectively give the differential

equations

a−1 f
+
0,0(x) = a−2 f

+
0,0(x) = 0 and a+

1 f
−
0,0(x) = a+

2 f
−
0,0(x) = 0 , (A.11)

which can each be solved to give

f±0,0(x) =
iE

π
e∓ iE (t2−x2) (A.12)

in the space S ′(R2), where the normalization constant has been fixed by
∫

R2 dx f±0,0(x) = 1.
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Lemma 6. The generalized functions f s,s′
n,m = W[ |f s

n〉〈f−s′
m | ] vanish for distinct s, s′ = ±.

Proof. The analog of (A.11) for f+,−
0,0 yields the two differential equations

∂−f
+,−
0,0 (x) = − iE x+ f+,−

0,0 (x) and ∂−f
+,−
0,0 (x) = + iE x+ f+,−

0,0 (x) , (A.13)

which together imply that f+,−
0,0 = 0 by continuity. The same argument leads to f−,+

0,0 = 0.

The result now follows from the analog of (A.7).

We will now show that the explicit forms of the generalized eigenfunctions f±m,n(x) in

Minkowski signature are simply given by the Landau wavefunctions with Wick rotated pa-

rameters.

Proposition 1. The generalized eigenfunctions can be written as

f±m,n(z, ϕ) =
|E|
2π

√

n!

m!
(−1)n e∓ iEz2/2(± iE)(m−n)/2zm−n e∓ϕ(m−n)Lm−n

n

(

± iEz2
)

(A.14)

=
|E|
2π

√

m!

n!
(−1)m e∓ i Ez2/2(± iE)(n−m)/2zn−m e∓ϕ(m−n)Ln−m

m

(

± iEz2
)

,(A.15)

where z =
√
t2 − x2, ϕ = tanh−1(x/t) and Lk

n(y) are the associated Laguerre polynomials.

Proof. We use the Wigner transformation formula (3.50) and the explicit form of the gen-

eralized eigenfunctions (3.26) with the electric field E′ = E/2 = 1/θ. Using the generating

function for the Hermite polynomials given by

e
−ξ+ξ q
∓ i θ =

∞
∑

n=0

1

n!

(

ξ√
∓ i θ

)n

Hn

(

q
/
√
∓ i θ

)

, (A.16)

we have

K±(ξ, η; t, x) := 2π |θ|
∞
∑

m,n=0

√

2m+n

m!n!

(

ξ√
∓ i θ

)m (

η√
∓ i θ

)n

f±m,n(x)

=
1√

∓ i θ π

∫

R

dk exp

{

− 1

∓ i θ

[

(

ξ2 − 2ξ (t+ k/2)
)

−
(

η2 − 2η (t− k/2)
)

−1

2
(t+k/2)2− 1

2
(t−k/2)2− i kx

]}

. (A.17)

Evaluating the formal Gaussian integral in (A.17) gives finally the generating function

K±(ξ, η; t, x) = 2 exp

{

1

∓ i θ

[

x2 − t2 + 2ξ (t∓ x) + 2η (t± x) − 2η ξ
]

}

(A.18)

in the space S ′(R4). The generalized functions f±m,n(x) can now be obtained by taking

suitable derivatives of (A.18) with respect to the variables ξ and η.

For m ≥ n one finds

f±m,n(x) =
1

2π |θ|
1√
m!n!

(∓ i θ

2

)(m+n)/2 ∂m

∂ξm

∂n

∂ηn
K±(ξ, η; t, x)

∣

∣

∣

∣

ξ=η=0
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=

√
m!n!

π |θ| e
1

∓ i θ
(x2−t2)

(

2

∓ i θ

)(m−n)/2

(t∓ x)m−n

×
n

∑

p=0

(

2

∓ i θ

(

t2 − x2
)

)n−p (−1)p

(m− p)! (n− p)! p!
. (A.19)

This expression can be further simplified by introducing the rapidity parameters (z, ϕ)

defined by

t = z coshϕ and x = z sinhϕ , (A.20)

such that x± = t ± x = z e±ϕ. Introducing the summation index q = n − p, inserting

E = 2/θ and using the definition of the associated Laguerre functions

Lk
n(y) =

n
∑

q=0

(n+ k)! (−1)q yq

(n− q)! (k + q)! q!
, (A.21)

we arrive at the explicit form for m ≥ n given by (A.14). The calculation for m < n is

completely analogous and leads to (A.15). However, using the identity [24, p. 321]

(−1)n rm−n Lm−n
n

(

r2
)

= (−1)m rn−mLn−m
m

(

r2
)

, (A.22)

we see that both forms (A.14) and (A.15) are valid for generic m,n ∈ N0, and are

thus equivalent.

B. Free two-point function

In this appendix we will derive an explicit expression for the free propagator (3.56), (3.57)

at σ = 1 in the spacetime coordinate basis. We begin with a spectral expansion of the prop-

agator

C±
σ=1(x,x

′ ) = 2 i 〈x|
(

D
2 + µ2

)−1|x′ 〉 =

∞
∑

m,n=0

2 i f±m,n(x) f±n,m(x′ )

±Em + µ2
, (B.1)

where we have used (3.50). First we will evaluate the sum over n. Substituting the expres-

sion (A.14) for f±m,n(x) and (A.15) for f±n,m(x′ ) we get

∞
∑

n=0

f±m,n(x)f±n,m(x′) =

(

1

πθ

)2

e∓ iE(z2+z′ 2)/2 (± iEzz′)m

m!
e∓(ϕ−ϕ′)m (B.2)

×
∞

∑

n=0

n!
(

± iEzz′ e∓(ϕ−ϕ′)
)−n

Lm−n
n

(

± iEz2
)

Lm−n
n

(

± iEz′ 2
)

.

Using the identity [24, eq. (48.23.11)]

∞
∑

n=0

n! cn Lm−n
n (ξ)Lk−n

n (η) = k! e c ξ η (1 − η c)m−k cm Lm−k
k

(

(1 − ξ c) (η c− 1)

c

)

(B.3)
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for k = m, after a bit of algebra we find

∞
∑

n=0

f±m,n(x)f±n,m(x′) =
1

π2θ2
e∓ iE(x−x′)2/2 e− i zz′ sinh(ϕ′−ϕ)Lm

(

± iE(x − x′)2
)

, (B.4)

where the factor m! cm coming from (B.3) cancels the same factor appearing in the denom-

inator of (B.2).

To obtain the full propagator we also have to carry out the summation over the index

m to get

C±
σ=1(x,x

′) =
1

π2θ2
e∓ iE(x−x′)2/2 e− iEzz′ sinh(ϕ′−ϕ)

∞
∑

m=0

Lm

(

± iE(x − x′)2
)

±E
(

m+ 1
2 ± i µ2

2E

)
. (B.5)

Using the identity [24, eq. (48.2.3)]

∞
∑

m=0

1

m+ a
Lk

m(w) =
Γ(a) Γ(k)

Γ(a− k)
1F1(a; k + 1;w) + Γ(k) 1F1(a− k; 1 − k;w) (B.6)

with a = 1
2 ± iµ2

2E , k = 0, w = ± iE (x − x′ )2 and 1F1(a; b;w) a confluent hypergeometric

function, we finally obtain

C±
σ=1(x,x

′ ) = ± 1

2π2
E e∓ iE (x−x′ )2/2 e− iE z z′ sinh(ϕ′−ϕ)

1

×F1

(

1

2
± iµ2

2E
; 1 ; ± iE (x − x′ )2

)

(B.7)

where we have again substituted θ = 2/E. The domain of validity for the identities used

above can be found in [24], and applied in our instance as equalities in the space S ′(R4).

Note that the factor e− i E z z′ sinh(ϕ′−ϕ) breaks translation invariance, as expected in an

electric background.
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